
An Experimental Study of Graph-Based Semi-Supervised
Classification with Additional Node Information

B. Lebichot.a,∗, M. Saerensa,

aMachine Learning Group - ICTEAM & LSM, Université catholique de Louvain
Place des Doyens 1, B-1348 Louvain-la-Neuve, Belgium.

Abstract

The volume of data generated by internet and social networks is increasing
every day, and there is a clear need for efficient ways of extracting useful
information from them. As this information can take different forms, it is
important to use all the available data representations for prediction. This
is often referred to multi-view learning in pattern recognition and machine
learning. In this paper, we focus our attention on supervised classification
using both regular, plain, tabular, data and structural information coming
from a network structure. In this context, 16 techniques are investigated
and compared in this study and can be divided in three families: the first
one uses only the plain data to fit a classification model, the second uses only
the network structure and the last combines both information sources. The
relative performances in these three settings are investigated. Furthermore,
the effect of using a network embedding and well-known indicators in spatial
statistics are also studied. Possible applications are automatic classification
of web pages or other linked documents, of people in a social network or
of proteins in a biological complex system, to name a few. Based on our
comparison, we draw some general conclusions and advice to tackle this
particular classification task: it is observed that some dataset labelings can
be better explained by their graph structure (graph-driven), or by their
features set (features-driven).

Keywords: Graph and network analysis, semi-supervised classification,
network data, graph mining, multi-view learning.

∗Corresponding author
Email addresses: bertrand.lebichot@uclouvain.be (B. Lebichot.),

marco.saerens@uclouvain.be (M. Saerens)

Preprint submitted to Information Fusion October 25, 2017



1. Introduction

Nowadays, with the increasing volume of data generated, for instance
by internet and social networks, there is a need for efficient ways to infer
useful information from those network-based data. Moreover, these data
can take several different forms and, in that case, it would be useful to
use these alternative views in the prediction model. This is the purpose of
multi-view learning [1, 2]. In this paper, we focus our attention on supervised
classification using both regular tabular data defined on nodes and structural
information coming from graphs or networks1.

Of course, as discussed in [3] (see, e.g., [4] for a survey), many different
approaches have been developed for information fusion in machine learning,
pattern recognition and applied statistics. This includes [3] simple weighted
averages (see, e.g., [5, 6]), Bayesian fusion (see, e.g., [5, 6]), majority vote
(see, e.g., [7, 8, 9]), models coming from uncertainty reasoning [10] (see,
e.g., [11]), standard multivariate statistical analysis techniques such as cor-
respondence analysis [12], maximum entropy modeling (see, e.g., [13, 14, 3]),
multi-view learning [1, 2] etc. In this work, we investigate several ways of
combining the structural information provided by a network (or graph, both
terms will be used interchangeably) of interactions between objects (for in-
stance interactions between members of an online social network) and infor-
mation associated to these different objects (for instance the gender of the
person, her age, etc) for solving objects (nodes) classification problems.

As well-known, the goal of classification is to automatically label data to
predefined classes. This is also called supervised learning since the method
uses known labels (the desired prediction of an instance) to fit the classifica-
tion model. One interesting variant is to use semi-supervised learning based
on a network structure [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Indeed, traditional pattern recognition, machine learning or data mining
classification methods require large amounts of labeled training instances –
which are often difficult to obtain – to fit accurate models. Semi-supervised
learning methods can reduce the effort by including unlabeled samples. This
name comes from the fact that the used dataset is a mixture of supervised
and unsupervised data (it contains training samples that are unlabeled).
Then, the classifier takes advantage from both the supervised and unsuper-
vised data. The advantage here is that unlabeled data are often much less
costly than labeled data. This technique often allows to reduce the amount

1Graph and network will be used interchangeably.

2



of labeled instances needed to achieve the same level of classification accu-
racy [24, 16]. In other words, exploiting the distribution of unlabeled data
during the model fitting process can prove helpful.

Semi-supervised classification comes in two different settings: inductive
and transductive [24]. The goal of the former setting is to predict the la-
bels of future test data, unknown when fitting the model, while the second
is to classify (only) the unlabeled instances of the training sample. Some
often-used semi-supervised algorithms include: expectation-maximization
with generative mixture models, self-training, co-training, transductive sup-
port vector machines, and graph-based methods [22, 23, 24, 23]. In this
work, we focus on these graph-based methods to label nodes.

The structure of the data can also be of different types. This work
focuses on a particular data structure: we assume that our dataset takes
the form of a network with features associated to the nodes. Nodes are the
samples of our dataset and links between these nodes represent a given type
of interaction or relation between these samples (like a friendship relation on
Facebook). For each node, a number of features or attributes characterizing
it is also available (see Figure 1 for an example). Other data structures exist
but are not studied in this paper; for instance:

• Different types of nodes can be present, with different types of features
sets describing them.

• Different types of relations can link the different nodes.

This problem has numerous applications such as classification of indi-
viduals in social networks, categorization of linked documents (e.g. patents
or scientific papers), or protein function prediction, to name a few. In this
kind of application (as in many others), unlabeled data are usually available
in large quantities and are easy to collect: friendship links can be recorded
on Facebook, text documents can be crawled from the internet and DNA
sequences of proteins are readily available from gene databases.

In this work, we investigate experimentally various models combining in-
formation on the nodes of the graph and the graph structure. Indeed, it has
been shown that network information can improve significantly prediction
accuracy in a number of contexts [25, 20]. A total of 16 classification algo-
rithms using various combinations of data sources, mainly described in [17],
are compared. The different considered algorithms are detailed in Section
4.

A standard support vector machine (SVM) classifier is used as a baseline
algorithm, but we also investigated the ridge logistic regression classifier.

3



The results and conclusions obtained with this second classification model
were similar to the SVM and are therefore not reported in this paper.

In short, the main questions investigated in this work are:

• Does the combination of features on nodes and network structure
works better than using the features only?

• Does the combination of features on nodes and network structure
works better than using the graph structure only?

• Which classifier performs best on network structure alone, without
considering features on nodes?

• Which classifier performs best when combining information, that is,
using network structure with features on nodes?

Finally, this comparison leads to some general conclusions and advices when
tackling classification problems on network data with node features.

In summary, this work has four main contributions:

• The paper reviews different algorithms used for learning from both a
graph structure and node features, mainly following [17]. Some algo-
rithms are inductive while some others are transductive.

• An empirical comparison of those algorithms is performed on ten real-
world datasets.

• We investigate the effect of extracting features from the graph struc-
ture (and some well-known indicators in spatial statistics) in a classi-
fication context.

• Finally, this comparison leads to some general conclusions and advices
to tackle graph-based classification tasks.

The remaining of this paper is organized as follows. Section 2 provides
some background and notation. Section 3 investigates related work. Sec-
tion 4 introduces the investigated classification methods. Then, Section 5
presents the experimental methodology and the results. Finally, Section 6
concludes the paper.

4



2. Background and notation

This section aims to introduce the necessary theoretical background and
notation used in the paper. Consider a weighted, undirected, strongly con-
nected, graph or network G (with no self-loop) containing a set of n vertices
V (or nodes) and a set of edges E (or arcs, links). The n × n adjacency
matrix of the graph, containing non-negative affinities between nodes, is
denoted as A, with elements aij ≥ 0.

We also introduce the Laplacian matrix L of the graph, defined in the
usual manner:

L = D−A (1)

where D = Diag(Ae) is the diagonal (out)degree matrix of the graph G
containing the ai• =

∑n
j=1 aij on its diagonal and e is a column vector full

of ones. One of the properties of L is that its eigenvalues provide useful in-
formation about the connectivity of the graph [26]. The smallest eigenvalue
of L is always equals to 0, and the second smallest one is equals to 0 only
if the graph is composed of at least two connected components. This last
value is called the algebraic connectivity.

Moreover, a natural random walk on G is defined in the standard way.
In node i, the random walker chooses the next edge to follow according to
transition probabilities

pij =
aij∑n

j′=1 aij′
(2)

representing the probability of jumping from node i to node j ∈ Succ(i),
the set of successor nodes of i. The corresponding n× n transition prob-
abilities matrix will be denoted as P and is stochastic. Thus, the random
walker chooses to follow an edge with a likelihood proportional to the affinity
(apart from the sum-to-one normalization), therefore favoring edges with a
large affinity.

Moreover, we will consider that each of the nodes of G has the same set
of m features, or attributes, with no missing values. The column vector xi

contains the values of the m features of node i and xij states for the value
of feature j taken by node i. Moreover, Xfeatures, or simply X, will refer to
the n×m data matrix containing the elements xij .

Finally we define y as the column vector containing the class labels of
the nodes. More precisely, yc is a binary vector indicating whether or not
each node belongs to class number c. That is, yc

i is equal to one if node i
belongs to class c, and zero otherwise.

Recall that the purpose of the classification tasks will to predict the class
of the unlabeled data (in a transductive setting), or to predict new test data

5



1

2

34

5

x4=[x41, x42, ...]
T ,y4

x5=[x51, x52, ...]
T ,y5

x1=[x11, x12, ...]
T ,y1

x2=[x21, x22, ...]
T ,y2

x3=[x31, x32, ...]
T ,y3

Figure 1: Example of graph with additional node information. Each node is characterized
by a feature vector and a class label.

(in an inductive setting), while knowing the structure of the graph G, the
values of the features X for all the nodes of G and the class labels yc on the
labeled nodes only for each c. Our baseline classifier based on features only
will be a linear support vector machines (SVM).

3. Some related work

The 16 investigated models are presented in the next Section 4. In
addition to those models, other approaches exist.

For example [27, 28] use a standard ridge regression model complemented
by a Laplacian regularization term, which has been called the Laplacian
regularized least squares. This option was investigated but provided poor
results compared to reported models (therefore not reported).

Note that using a logistic ridge regression as the base classifier (instead
of a support vector machine) was also investigated in this work but results
are not reported here for conciseness as it provided performances similar to
the SVM.

Laplacian support vector machines (LapSVMs) extend the SVM classifier
in order to take the structure of the network into account. They exploit both
the information on the nodes and the graph structure in order to categorize
the nodes with the use of its Laplacian matrix (see Section 2). To this
end, [27] proposed to add a graph Laplacian regularization term to the

6



traditional SVM cost function in order to obtain a semi-supervised version
of this model. A Matlab toolbox for this model is available but provided poor
results in terms of performance and tractability. This model was therefore
not included in our comparisons.

Chakrabarti et al. [29] developed, in the context of patents classification,
a naive Bayes model in the presence of structural autocorrelation. The main
idea is to use a naive Bayes classifier combining both feature information
on the nodes and structural information by making some independence as-
sumptions. However, we found that this procedure is very time consuming,
even for small-size networks, and decided to not include it in the present
work as results were impossible to obtain on the larger datasets.

Also note that various semi-supervised classifiers based on network data
only (features on nodes are not available) were also developed [20, 23]. The
interested reader is invited to consult, e.g., [30, 15, 16, 18, 21, 22, 23, 24]
(and included references), focused on this topic, for comprehensive reviews.
Finally, an interesting survey and a comparative experiment of related meth-
ods, but more focused on relational learning, can be found in [20].

Finally, our problem is a particular case of the more general multi-view
learning framework: Multi-view learning is an emerging direction in ma-
chine learning which considers learning with multiple views to improve the
generalization performance [1, 2]. Also known as data fusion, it learns from
multiple feature sets. In our particular case, we study the problem of learn-
ing from two information sources: on the one hand features and on the other
hand a single graph.

Multi-view learning methods are divided into three major categories :
co-training style algorithms, co-regularization style algorithms and margin-
consistency style algorithms [1, 2]. Some of these multi-view algorithms will
be investigated.

• Co-training is historically the first family of multi-view algorithms:
the classifier is trained alternately on two distinct views with confident
labels for the unlabeled data (see [31] for details). Examples are co-
EM, co-testing and robust co-training [2].

• Co-regularization algorithms make sure that data from multiple views
are consistent by adding a regularization term in the classifier objective
function: the disagreement between the discriminant functions of the
two views. Examples are sparse multi-view SVMs, multi-view TSVMs,
multi-view Laplacian SVMs and multi-view Laplacian TSVMs [2].

• Margin-consistency style algorithms make use of the latent consistency

7



of classification results from multiple views by using the framework of
maximize entropy discrimination (MED, see [1, 2] for details).

4. Description of relevant classification methods

The different classification methods compared in this work are briefly
presented in this section, which is largely inspired by [17]. For a more
thorough presentation, see the provided references to the original works
or [17]. The classification models are sorted into different families: graph
embedding-based classifiers, extensions of feature-based classifiers, graph-
based classifiers and multi-view learning.

All these methods rely on a standard, strong, assumption about the
distribution of the labels in the graph: it is assumed that neighboring nodes
are likely to belong to the same class and thus are likely to share the same
class label (see, e.g., [19, 17, 21]). This assumption is often called homophily,
associativity, local consistency, or structural autocorrelation. As described
now, this hypothesis can be tested by using some autocorrelation measures
widely used in spatial statistics. Moreover, the experiments show that if the
assumption is not verified, the methods exploiting the graph structure do
not bring any useful information to classify the nodes.

4.1. Graph embedding-based classifiers

A first interesting way to combine information from the features on the
nodes and from the graph structure is to perform a graph embedding pro-
jecting the nodes of the graph into a low-dimensional space (an embedding
space) preserving as much as possible its structural information, and then
use the coordinates of the projected nodes as additional features in a stan-
dard classification model, such as a logistic regression or a support vector
machine.

This procedure has been proposed, e.g., in the field of spatial statistics
for ecological modeling [32, 33, 34], but also more recently in data mining
[35, 36, 37, 38]. While many graph embedding techniques could be used,
[33] suggests to exploit Moran’s or Geary’s index of spatial autocorrelation
in order to compute the embedding.

Let us briefly develop their approach by closely following [17] (see this
reference for more information). Moran’s I and Geary’s c (see, e.g., [39,
40, 41, 42]) are two coefficients commonly used in spatial statistics in or-
der to test the hypothesis of spatial autocorrelation of a numerical quantity
defined on the nodes. This interesting property will be investigated on the
datasets used in the experimental section, in the context of semisupervised

8



classification (see, e.g., Table 8). Four different possibilities will be consid-
ered to extract features from the graph structure: maximizing Moran’s I,
minimizing Geary’s c, local principal component analysis and maximizing
the bag-of-path (BoP) modularity.

4.1.1. Maximizing Moran’s I

Moran’s I [43, 44] is given by

I(x) =
n

a••

∑n
i,j=1 aij(xi − x̄)(xj − x̄)∑n

i′=1(xi′ − x̄)2
(3)

where xi and xj are the values observed on nodes i and j respectively, for a
considered quantity defined on the nodes (for instance the age of the person
in a social network). The column vector x is the vector containing the values
xi on all nodes and x̄ is the average value of x. Then, a•• is simply the sum
of all entries of A – the volume of the graph.

I(x) can be interpreted as a correlation coefficient similar to the Pearson
correlation coefficient [39, 40, 41, 42]. The numerator is a measure of covari-
ance among the neighboring xi in G, while the denominator is a measure of
variance. It is a common misconception that I is in the interval [−1,+1].
Instead, the upper and lower bound depends on n, a••, but also on the max-
imum and minimum eigenvalues of A (see [45] for details). A value close to
I0 = −1/(n − 1) ≈ 0 [45] indicates no evidence of autocorrelation, a larger
value indicates positive autocorrelation and a smaller value indicates nega-
tive autocorrelation (autocorrelation means that neighboring nodes tend to
take similar values).

In matrix form, Equation (3) can be rewritten as

I(x) =
n

a••

xTHAHx

xTHx
(4)

where H = (I− E/n) is the centering matrix [46] and E is a matrix full of
ones. Note that the centering matrix is idempotent, HH = H.

The objective is now to find the scores x that achieve the largest autocor-
relation, as defined by Moran’s index. This corresponds to the values that
most explain the structure of G. It can be obtained by setting the gradient
equal to zero; we then obtain the following generalized eigensystem:

HAHx′ = λx′, and then x = Hx′ (5)

The idea is thus to extract the first eigenvector x1 of the centered ad-
jacency matrix (5) corresponding to the largest eigenvalue λ1 and then to

9



compute the second-largest eigenvector, x2, orthogonal to x1, etc. The
eigenvalues λi are proportional to the corresponding explained Moran’s I(x).

The p largest centered eigenvectors of (5) are thus extracted and then
used as additional p features for a supervised classification model (here a
SVM). In other words, XMoran = [x1,x2, . . . ,xp]

T is a new data matrix,
capturing the structural information of G, that can be concatenated to
the feature-based data matrix Xfeatures, forming the extended data matrix
[Xfeatures,XMoran].

4.1.2. Minimizing Geary’s c

On the other hand, Geary’s c [47] is another estimate of autocorrelation
given by

c(x) =
(n− 1)

2 a••

∑n
i,j=1 aij(xi − xj)2∑n

i′=1(xi′ − x̄)2
(6)

and is related to Moran’s I. However, while Moran’s I considers a covariance
between neighboring nodes, Geary’s c considers distances between values
on pairs of neighboring nodes. Once again, lower and upper bounds are
often assumed to be respectively 0 and 2 with 0 indicating perfect positive
autocorrelation and 2 indicating perfect negative autocorrelation [34, 40, 42].
However, as for Moran’s I, [45] shows that the bounds are more complex and
actually depend on n, a••, and the maximum and minimum eigenvalues of
A. c = 1 indicates no evidence of autocorrelation.

In matrix form, Geary’s c can be rewritten as

c(x) =
(n− 1)

2a••

xTLx

xTHx
. (7)

This time, the objective is to find the score vector minimizing Geary’s
c. By proceeding as for Moran’s I, we find that minimizing c(x) aims to
compute the p lowest non-trivial eigenvectors of the Laplacian matrix:

Lx = λHx (8)

and then use these eigenvectors as additional p features in a classification
model. We therefore end up with the problem of computing the lowest eigen-
vectors of the Laplacian matrix, which also appears in spectral clustering
(ratio cut, see, e.g., [48, 17, 49]).

Geary’s c has a computational advantage over Moran’s I: the Laplacian
matrix is usually sparse, which is not the case for Moran’s I. Moreover,
note that since the Laplacian matrix L is centered, any non-trivial solution
of Lx = λx is also a solution of Equation (8).

10



4.1.3. Local principal component analysis

In [50, 51], the authors propose to use a measure of local, structural,
association between nodes, the contiguity ratio defined as

cr(x) =

∑n
i=1(xi −mi)

2∑n
i′=1(xi′ − x̄)2

, with mi =
∑

j∈N (i)

pijxj . (9)

and mi is the average value observed on the neighbors of i, N (i). As for
Geary’s index, the value is close to zero when there is a strong structural
association. However, there are no clear bounds indicating no structural
association or negative correlation [51].

The numerator of Equation (9) is the mean squared difference between
the value on a node and the average of its neighboring values; it is called the
local variance in [51]. The denominator is the standard sample variance. In
matrix form,

cr(x) =
xT (I−P)T (I−P)x

xTHx
. (10)

Proceeding as for Geary and Moran’s indexes, minimizing cr(x) aims to
solve

(I−P)T (I−P)x = λHx (11)

Here again, eigenvectors corresponding to the smallest non-trivial eigenval-
ues of the eigensystem (11) are extracted. This procedure is also referred to
as local principal component analysis in [51].

4.1.4. Bag-of-path modularity

For this algorithm, we also compute a number of structural features, but
now derived from the modularity measure (which was introduced by New-
man and co-workers in [52, 53, 49]) redefined in the bag-of-path (BoP) frame-
work [54], and concatenate them to the node features, [Xfeatures,XBoPMod].
Again, a SVM is then used to classify all unlabeled nodes. Indeed, it has been
shown that using the dominant eigenvectors of the BoP modularity matrix
provides better performances than using the eigenvectors of the standard
modularity matrix [54]. The results for the standard modularity matrix are
therefore not reported in this work.

It can be shown (see [54] for details) that the BoP modularity matrix is
equal to

QBoP = Z− (Ze)(eTZ)

eTZe
(12)

11



where Z is the fundamental bag-of-path n × n matrix and e is a length
n column vector full of ones. Then as for Moran’s I and Geary’s c, an
eigensystem

QBoPx = λx (13)

must be solved and the largest eigenvectors are used as new, additional,
structural, features.

4.2. Extensions of standard feature-based classifiers

These techniques rely on extensions of standard feature-based classifiers
(for instance a logistic regression model or a support vector machine). The
extension is defined in order to take the network structure into account. As
before, the discussion is based on [17].

4.2.1. The AutoSVM: taking autocovariates into account

This model is also known as the autologistic or autologit model [55,
56, 57, 58], and is frequently used in the spatial statistics and biostatistics
fields.

Note that, as a SVM is used as base classifier in this work (see Section
1), we adapted this model (instead of the logistic regression in [57]) in order
to take the graph structure into account. The method is based on the
quantity acci =

∑
j∈N (i) pij ŷ

c
j , where ŷcj is the predicted membership of node

j, called the autocovariate in [57] (other forms are possible, see [56, 57]).
It corresponds to the weighted averaged membership to class c within the
neighborhood of i: it indicates to which extent neighbors of i belong to class
c. The assumption is that node i has a higher chance to belong to class c if
its neighbors also belong to that class.

However, since the predicted value ŷcj depends on the occurrence of the
predicted value on other nodes, fitting the model is not straightforward. For
the autologistic model, it goes through the maximization of the (pseudo-)
likelihood (see for example [59, 55]), but we will consider a simpler alterna-
tive [57] which uses a kind of expectation-maximization-like heuristics (EM,
see, e.g. [60, 61]), and is easy to adapt to our SVM classifier.

Following [17], here is a summary of the estimation procedure proposed
in [57]:

1. At t = 0, initialize the predicted class memberships ŷci (t = 0) of the
unlabeled nodes by a standard SVM depending on the feature vectors
only, from which we disregard the structural information (the informa-
tion about neighbors’ labels). For the labeled nodes, the membership
values are of course not modified.

12



2. Compute the current values of the autocovariates, acci =
∑

j∈N (i) pij ŷ
c
j(t),

for all nodes.

3. Train a so-called autoSVM model based on these current autoco-
variate values as well as the features on nodes, providing parameter
estimates ŵc.

4. Compute the new predicted class memberships ŷci (t + 1) of the set
of unlabeled nodes from the fitted autoSVM model. After having
considered all the unlabeled nodes, we have the new predicted values
ŷci (t+ 1).

5. Steps 2 to 4 are iterated until convergence of the predicted membership
values ŷci (t).

4.2.2. Double kernel SVM

Here, we describe another simple way of combining the information com-
ing from features on nodes and graph structure. The basic idea ([62, 17]) is
to

1. Compute a n × n kernel matrix based on node features [63, 64], for
instance a linear kernel or a gaussian kernel.

2. Compute a n × n kernel matrix on the graph [65, 17, 66, 64], for
instance the regularized commute-time kernel (see Subsection 5.2.2).

3. Fit a SVM based on these two combined kernels.

Then, by using the kernel trick, everything happens as if the new data matrix
is

Xnew = [KA,KX] (14)

where KA is a kernel on a graph and KX = XXT is the kernel matrix
associated to the features on the nodes (see [17] for details). Then, we can
fit a SVM classifier based on this new data matrix and the labeled nodes.

4.2.3. A spatial autoregressive model

This model is a spatial extension of a standard regression model [67] and
is well known in spatial econometrics. This extended model assumes that
the predicted vector of class memberships ŷc is generated in each class c
according to

ŷc = ρPŷc + Xwc + ε (15)

where wc is the usual parameter vector, ρ is a scalar parameter intro-
duced to account for the structural dependency through P and ε is an
error term. This model is somehow related to the previously introduced
AutoSVM model. Obviously if ρ is equal to zero, there is no structural

13



dependency and the model reduces to a standard linear regression model.
Lesage’s Econometrics Matlab toolbox was used for the implementation of
this model [67]; see this reference for more information.

4.3. Graph-based classifiers

We also investigate some semi-supervised methods based on the graph
structure only (no node feature exists or features are simply not taken into
account). We selected the techniques performing best in a series of exper-
imental comparisons [65, 30, 68]. As already discussed, they rely on some
strong assumptions about the distribution of labels: that neighboring nodes
(or “close nodes”) are likely to share the same class label [16].

4.3.1. The bag-of-paths group betweenness

This model [30], inspired by [69, 70], considers a bag containing all the
possible paths between pairs of nodes in G. Then, a Boltzmann distribution,
depending on a temperature parameter T , is defined on the set of paths such
that long (high-cost) paths have a low probability of being drawn from the
bag, while short (low-cost) paths have a high probability of being drawn.

The bag-of-paths (BoP) probabilities, P (s = i, e = j), providing the
probability of drawing a path starting in i and ending in j, can be computed
in closed form and a betweenness measure quantifying to which extend a
node is in-between two node is defined. A node receives a high betweenness
if it has a large a posteriori probability of appearing on paths connecting
two arbitrary nodes of the network. A group betweenness between classes is
defined as the sum of the contribution of all paths starting and ending in a
particular class, and passing through the considered node. Each unlabeled
node is then classified according to the class showing the highest group
betweenness. More information can be found in [30].

4.3.2. A sum-of-similarities based on the regularized commute time kernel

We also investigate a classification procedure based on a simple align-
ment with the regularized commute time kernel (RCT) K, a sum-of-similarities
defined by Kyc, with K = (D− αA)−1 [71, 65, 17]. This expression quan-
tifies to which extend each node is close (in terms of the similarity provided
by the regularized commute time kernel) to class c. This similarity is com-
puted for each class c in turn. Then, each node is assigned to the class
showing the largest sum of similarities. It corresponds to a variant of the k
nearest neighbors classifier when dealing with a similarity matrix instead of
distances.

14



Element i, j of this kernel can be interpreted as the discounted cumu-
lated probability of visiting node j when starting from node i. The (scalar)
parameter α ∈ [0, 1] corresponds to a killed random walk where the ran-
dom walker has a (1 − α) probability of disappearing at each step. Other
graph kernels could be used in a sum-of-similarities setting [17] but this one
consistently provided good results in comparative studies of graph-based
semi-supervised classification techniques [65, 68, 69].

4.4. Multi-view learning

Finally, Multi-view learning is also considered. The three classes of
Multi-view learning were recalled in Section 3. The original Co-training
algorithms [31] was re-implemented based on SVMs. For Co-regularization
algorithms, a kernel canonical correlation [72] tool was kindly provided in
Matlab by one of the authors. However, for Margin-consistency algorithms,
we failed to find an efficient Matlab implementation.

4.4.1. Co-training

Given a set L of labeled samples/nodes and a set U of unlabeled sam-
ples/nodes, the algorithm iterates the following two-steps procedure. First,
use L to train two distinct classifiers: here one is based on the features only
and the second is based on a kernel extracted from the graph only. Second,
allow each of the classifier to label a small subset of U with the highest
posteriors provided by both views (here, distances to the hyperplane were
used instead), then update L and U . When all unlabeled nodes have been
labeled, the procedure stops. See [31] for more details.

4.4.2. Kernel canonical correlation analysis

Kernel canonical correlation analysis [72] is an kernel extension of stan-
dard canonical correlation analysis. The idea is to project the data in a new
space, and constrain the multiple transformed feature sets to be as close as
possible, while regularizing the self covariance of each transformed feature
sets to be small enough. The goal is to find projection vectors w1 and w2

such that

cov(Xw1,Yw2)√
var(Xw1)var(Yw2)

(16)

is maximal. var() and cov() are respectively the variance and covariance
measures and X and Y are two kernel-based views. In our case, X corre-
sponds to the regular features and Y corresponds to a kernel built from the
graph (here, we chose the RCT kernel with α = 0.85). See [2] or [72] for

15



Table 1: Class distribution of the four WebKB datasets.

Cornell Texas Washington Wisconsin
Class (DB1) (DB2) (DB3) (DB4)

Course 42 33 59 70
Faculty 32 30 25 32
Student 83 101 103 118
Project + staff 38 19 28 31

Total 195 183 230 251
Majority class (%) 42.6 55.2 44.8 47.0

Number of features 1704 1704 1704 1704

more details. Notice that this method is related to the double kernel SVM
of Subsection 4.2.2.

5. Experiments

In this section, the different classification methods will be compared
on semi-supervised classification tasks and several datasets. The goal is to
classify unlabeled nodes and to compare the results obtained by the different
methods in terms of classification accuracy.

This section is organized as follows. First, the datasets used for semi-
supervised classification are described in Subsection 5.1. Then, the com-
pared methods are recalled in Subsection 5.2. The experimental methodol-
ogy is explained in Subsection 5.3. Finally, results are presented and dis-
cussed in Subsection 5.4.

5.1. Datasets

All datasets are described by (i) the adjacency matrix A of the un-
derlying graph, (ii) class vectors yc (to predict) and (iii) a number of fea-
tures on nodes gathered in the data matrix Xfeatures. Using a chi-square
test, we kept only the 100 most significant features for each dataset. The
datasets are available at http://www.isys.ucl.ac.be/staff/lebichot/

research.htm.
For each of these dataset, if more than one connected component is

present, we only use the largest connected component, deleting all the others
nodes, features and target classes. Also, we choose to work with undirected
graphs for all datasets: if a graph is directed, we used A = (AT + A)/2 to
introduce reciprocal edges.

16

http://www.isys.ucl.ac.be/staff/lebichot/research.htm
http://www.isys.ucl.ac.be/staff/lebichot/research.htm


Table 2: Class distribution of the three Ego facebook datasets.

FB 107 FB 1684 FB 1912
Class (DB5) (DB6) (DB7)

Main group 524 568 737
Other groups 232 225 308

Total 756 793 1045
Majority class (%) 69.3 71.2 70.5

Number of features 480 319 576

• The four WebKB datasets (DB1-DB4) [73] consist of web pages gath-
ered from computer science departments from four universities (there
are four datasets, one for each university), with each page manually
labeled into one of four categories: course, faculty, student and project
[20]. The pages are linked by citations (if x links to y then it means
that y is cited by x, not to be confused with the four co-citation
datasets). Each web page in the dataset is also characterized by a
binary word vector indicating the absence/presence of the correspond-
ing word from the dictionary. The dictionary consists of 1703 unique
words (words appearing less than 10 times were ignored). Originally,
a fifth category, Staff, was present but since it contained only very
few instances, it was merged with the Project class. Details on these
datasets are shown in Table 1.

• The three Ego Facebook datasets (DB5-DB7) [74] consist of “circles”
(or friends communities) from Facebook. Facebook data were collected
from survey participants using a Facebook application. The original
dataset includes node features (profiles), circles, and ego networks for
10 networks. Those data are anonymized and the exact signification of
the circles is unknown [74]. We use only the three first networks and
the classification task is to predict the affiliation to a circle. Details
on these datasets are shown in Table 2. Each dataset has two classes.

• The CiteSeer dataset (DB8) [73] consists of 3312 scientific publications
classified into six classes. The pages are linked by citation. Each pub-
lication in the dataset is described by a binary word vector indicating
the absence/presence of the corresponding word from the dictionary.
The dictionary consists of 3703 unique words (words appearing less
than 10 times were ignored). The target variable contains the topic

17



Table 3: Class distribution of the Citeseer, Cora and Wikipedia datasets.

Citeseer Cora Wikipedia
Class (DB8) (DB9) (DB10)

Class 1 269 285 248
Class 2 455 406 509
Class 3 300 726 194
Class 4 75 379 99
Class 5 78 214 152
Class 6 188 131 409
Class 7 344 181
Class 8 128
Class 9 364
Class 10 351
Class 11 194
Class 12 81
Class 13 233
Class 14 111

Total 1392 2708 3271
Majority class (%) 32.7 26.8 15.6

Number of features 3703 1434 4973

of the publications (six topics). Details on this dataset are shown in
Table 3.

• The Cora dataset (DB9) [73] consists of 2708 scientific publications
classified into one of seven classes denoting topics as for previous
dataset. Pages are linked by citations. Each publication is also de-
scribed by a binary word vector indicating the absence/presence of
the corresponding word from the dictionary. The dictionary consists
of 1434 unique words or features (words appearing less than 10 times
were ignored). The target variable represents the topic of the publica-
tions. Details on this dataset are shown in Table 3.

• The Wikipedia dataset (DB10) [73] consists of 3271 Wikipedia articles
that appeared in the featured list in the period Oct. 7-21, 2009. Each
document belongs to one of 14 distinct broad categories, which were
obtained by using the category under which each article is listed. After
stemming and stop-word removal, the content of each document is
represented by a tf/idf-weighted feature vector, for a total of 4973
words. Pages are linked by citation. The target variable represents the
articles field (14 different topics). Details on this dataset are shown in

18



Table 3.

Moreover, in order to study the impact of the relative information pro-
vided by the graph structure and the features on nodes, we created new
derived datasets by weakening gradually the information provided by the
node features. More precisely, for each dataset, the features available on
the nodes have been ranked by decreasing association (using a chi-square
statistics) with the target classes to be predicted. Then, datasets with sub-
sets of the features containing respectively the 5 (5F), 10 (10F), 25 (25F),
50 (50F) and 100 (100F) most informative features were created (5 sets
of features). These datasets are weakened versions of the original datasets,
allowing to investigate the respective impact of features on nodes and graph
structure. We also investigated sets with more features (200 and 400), but
conclusions were the same, so that they are not reported here for conciseness.

5.2. Compared classification models

In this work, a transductive scheme is used, as we need to know the
whole graph structure to label unlabeled nodes. The 16 different algorithms
described before will be compared and can be sorted in three categories,
according to the information they use. Some algorithms use only features
to build the model (denoted as X – data matrix with features only), others
use only the graph structure (denoted as A – adjacency matrix of the graph
only), and the third category uses both the structure of the graph and the
features of the nodes (denoted as AX – combined information).

5.2.1. Using features on nodes only

This reduces to a standard classification problem and we use a linear
Support Vector Machine (SVM) based on the features of the nodes to label
these nodes (SVM-X). Here, we consider SVMs in the binary classification
setting (i.e. yi ∈ {−1,+1}). For multiclass problems, we used a one-vs-one
strategy [75]. This classifier is considered as a baseline. In practical terms,
we use the well-known Liblinear library [76]. Notice that SVM follows an
inductive scheme, unlike all other methods. Transductive SVMs [77] were
also considered, but their available Matlab implementation was too slow to
be included in the present analysis.

5.2.2. Using graph structure only

Three different families of methods using graph structure only are inves-
tigated.

19



For the bag of path classifier based on the bag-of-paths group be-
tweenness (BoP-A), the betweenness is computed for each class in turn.
Then, each unlabeled node is assigned to the class showing the largest value
(see Section 4.3.1 for more details).

Then, for the sum-of-similarities method based on the regularized
commute time kernel (CTK-A), the classification procedure is the same
as BoP-A: the class similarity is computed for each class in turn and each
unlabeled node is assigned to the class showing the largest similarity (see
Section 4.3.2).

The four graph embedding techniques discussed in Section 4.1 are
used together with a SVM, without considering any node feature, are also
considered. The SVM is trained using a given number of extracted dominant
eigenvectors derived from each measure (this number is a parameter to tune).
The SVM model is then used to classify the unlabeled nodes. SVMs using
Moran’s I, Geary’s c, local principal component analysis and the bag-of-
paths modularity (see Section 4.1) are denoted as SVM-M-A, SVM-G-A,
SVM-L-A and SVM-BoPM-A, respectively.

5.2.3. Using both information (features on nodes and graph structure)

Here, we investigate the following models.
In the double kernel SVM (DK-SVM-AX), two kernels are com-

puted, one defined on the graph and the second from the node features
Xnew = [KA,KX] (see Section 4.2.2). A SVM is then used to classify the
unlabeled nodes.

Similarly, the support vector machine using autocovariates (ASVM-
AX), autocovariates are added to the node features Xnew = [Xfeatures,Ac]
(see Section 4.2.1).

On the other hand, the spatial autoregressive model (SAR-AX) is
a spatial extension of the standard regression model (see Section 4.2.3), used
to classify the unlabeled nodes.

Moreover, the dominant eigenvectors (this number is a parameter to
tune) provided by the four graph embedding techniques (Section 4.1)
are combined with the node features and then injected into a linear SVM
classifier. The new set of feature is therefore Xnew = [Xfeatures,Xembedding],
where Xembedding can be obtained using Moran’s I, Geary’s c, local princi-
pal component analysis and the bag-of-paths modularity (see Section 4.1).
Those four variants are named SVM-M-AX, SVM-G-AX, SVM-L-AX
and SVM-BoPM-AX, respectively.

Furthermore, co-training based on two SVMs (SVM-COT-AX)
uses two SVM classifiers, one based on a kernel computed from the features

20



X and the second based on a graph kernel computed from A (see Section
4.4.1). A two-steps procedure is then used to classify the unlabeled nodes.

Finally, the SVM based on kernel canonical correlation analysis
(SVM-KCA-AX) first aligns two kernels, one based on X and one based
on A. Then the two aligned kernels are used together as for DK-SVM-AX.

The considered classifiers, together with their parameters to be tuned,
are listed in Table 4.

Table 4: The 16 classifiers, the value range tested for tuning their parameters and the
most frequently selected values: Mode is the most selected value across all datasets. Note
that p, the number of extracted eigenvector, is given in %: this is the relative number of
kept features with respect to the number of node of the graph (different for each dataset).

Classification model Use A Use X Acronym Param. Tested values Mode

Bag of paths betweenness (4.3.1) yes no BoP-A θ > 0 10[−9,−6,−3,0] 10−6(40.2%)
Sum of similarities with the RCT kernel (4.3.2) yes no CTK-A λ > 0 0.2, 0.4, 0.6, 0.8, 1 0.8(39.4%)
SVM on Moran’s extracted features only (4.1.1) yes no SVM-M-A C > 0 10[−6,−4,−2,0,2,4,6] 10−2(63.0%)

p > 0 [5, 10, 20, 35, 50%] 5%(74.0%)
SVM on Geary’s extracted features only (4.1.2) yes no SVM-G-A C > 0 10[−6,−4,−2,0,2,4,6] 10−2(34.8%)

p > 0 [5, 10, 20, 35, 50%] 5%(39.6%)
SVM on LPCA’s extracted features only (4.1.3) yes no SVM-L-A C > 0 10[−6,−4,−2,0,2,4,6] 102(47.3%)

p > 0 [5, 10, 20, 35, 50%] 5%(69.5%)
SVM on BoP modularity extracted features (4.1.4) yes no SVM-BoPM-A θ > 0 10[−9,−6,−3,0] 100(35.2%)

C > 0 10[−6,−3,0,3,6] 103(44.4%)
p > 0 [5, 10, 20, 35, 50%] 5%(72.0%)

SVM on node features only (baseline) no yes SVM-X C > 0 10[−6,−4,−2,0,2,4,6] 10−2(27.2%)
Spatial autoregressive model (4.2.3) yes yes SAR-AX none − -
SVM on Moran and nodes features (4.1.1) yes yes SVM-M-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(26.9%)

p > 0 [5, 10, 20, 35, 50%] 5%(33.3%)
SVM on Geary and nodes features (4.1.2) yes yes SVM-G-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(21.2%)

p > 0 [5, 10, 20, 35, 50%] 5%(31.8%)
SVM on LPCA and nodes features (4.1.3) yes yes SVM-L-AX C > 0 10[−6,−4,−2,0,2,4,6] 102(28.4%)

p > 0 [5, 10, 20, 35, 50%] 5%(41.8%)
SVM on BoP modularity and nodes features (4.1.4) yes yes SVM-BoPM-AX θ > 0 10[−9,−6,−3,0] 100(27.4%)

C > 0 10[−6,−3,0,3,6] 103(41.0%)
p > 0 [5, 10, 20, 35, 50%] 5%(48.9%)

SVM on autocovatiates and nodes features (4.2.1) yes yes ASVM-AX C > 0 10[−6,−4,−2,0,2,4,6] 100(28.1%)
SVM on a double kernel (4.2.2) yes yes SVM-DK-AX C > 0 10[−6,−4,−2,0,2,4,6] 10−4(31.7%)
Co-training based on two SVMs (4.4.1) yes yes SVM-COT-AX C > 0 10[−6,−3,0,3,6] 10−6(34.8%)
SVM based on kernel canonical correlation (4.4.2) yes yes SVM-KCA-AX C > 0 10[−6,−3,0,3,6] 10−6(44.2%)

5.3. Experimental methodology

The classification accuracy will be reported for a 20% labeling rate, i.e.
proportion of nodes for which labels are known. Labels of remaining nodes
are deleted during model fitting phase and are used as test data during the
assessment phase, where the various classification models predict the most
suitable category of each unlabeled node in the test set.

A standard 5-fold nested cross-validation is used for assessing the in-
vestigated methods. For each dataset and for each considered feature set,
samples (nodes) are randomly assigned into 5 external folds, which defines

21



Table 5: Time analysis of the 16 classifiers. Time 251 is the time in seconds required
to label DB4, with two classes and 251 nodes (Student vs other, cfr Table 1). Time 756
is the time in seconds required to label DB5, with two classes and 756 nodes. Ratio is
computed as Time 756 divided by Time 251 (from DB4 to DB5, the number of node is
multiplied by 3.012). Computation times are averaged on 10 runs. Param is a reminder
about the parameters to be tuned. The quickest methods are indicated in bold.

Acronym Param Implementation Time 251 Time 756 Ratio
BoP-A θ Matlab (not sparse) 0.69s 25.99s 37.47
CTK-A α Matlab (sparse) 0.15s 0.59s 4.06
SVM-M-A C,p Matlab with MEX(C) 2.03s 28.44s 14.01
SVM-G-A C,p Matlab with MEX(C) 0.44s 4.66s 10.57
SVM-L-A C,p Matlab with MEX(C) 0.53s 6.13s 11.55
SVM-BoPM-A θ,C,p Matlab with MEX(C) 2.16s 58.46s 27.03
SVM-X none Matlab with MEX(C) 0.10s 0.22s 2.08
SAR-AX none Lesage’s Matlab toolbox 2.96s 43.80s 14.79
SVM-M-AX C,p Matlab with MEX(C) 2.00s 29.76s 14.89
SVM-G-AX C,p Matlab with MEX(C) 0.47s 5.19s 11.00
SVM-L-AX C,p Matlab with MEX(C) 0.53s 6.88s 13.00
SVM-BoPM-AX θ,C,p Matlab with MEX(C) 2.18s 60.41s 27.73
ASVM-AX C Matlab with MEX(C) 1.50s 7.78s 5.18
SVM-DK-AX C Matlab with MEX(C) 1.26s 17.00s 13.48
SVM-COT-AX C Matlab with MEX(C) 2.43s 34.92s 14.34
SVM-KCA-AX C Matlab 4.37s 82.76s 18.95

one run of the experimental comparison. Moreover, for each external fold, a
5-fold internal, nested, cross-validation is performed to tune the parameters
of the models (see Table 4). The results for one specific run are then com-
puted by taking the average over the 5 external folds. The whole procedure
is repeated 5 times to mitigate the effect of lucky/unlucky samples-to-fold
assignation, so that 5 runs of the experimental comparison for each dataset
and feature set are performed, with different fold assignments.

5.4. Results and discussion

First of all, most frequently selected parameter values are reported on
Table 4. We observe that the most selected value for p (the number of
eigenvectors extracted for representing the graph structure; see Section 4.1)
is actually low. This is good news since efficient eigensystem solvers can
be used to compute sequentially the first eigenvectors corresponding to the
largest (or smallest) eigenvalues.

The classification accuracy and standard deviation, averaged on the 5
runs, are reported on Tables 6 (for the methods based on both features and
the graph structure) and 7 (for the methods based on the graph structure

22



Table 6: Classification accuracy in percent ± standard deviation, obtained on the 5 runs,
the “AX” combined methods (as well as the baseline) and the 10 datasets. Results are
reported for the five different feature sets (100F stands for the set of 100 features, and so
on). The standard deviation is computed on the 5 folds of the external cross-validation
and the 5 independent runs. Best results for each dataset and feature set are highlighted
in bold.

SAR SVM-G SVM-M ASVM SVM-DK SVM-BoPM SVM-L SVM-COT SVM-KCA SVM
AX AX AX AX AX AX AX AX AX X

D
B

1

100F 53.2±7.5 84.0±1.4 83.7±1.4 79.4±0.8 84.9±1.1 84.1±1.0 83.7±1.3 66.7±1.5 84.1±0.7 83.7±1.5
50F 66.9±0.9 79.5±1.8 79.5±2.0 79.2±1.9 80.9±1.6 79.0±3.2 79.5±2.0 64.4±2.0 78.3±0.9 80.6±0.7
25F 65.4±3.2 69.8±4.0 68.1±4.4 74.6±1.3 73.6±1.5 73.9±2.0 68.6±4.4 57.5±2.0 69.3±1.6 74.6±1.6
10F 64.4±3.3 63.0±3.8 62.2±4.8 71.4±3.5 69.7±3.2 69.8±2.6 62.7±3.9 56.5±1.5 70.3±3.1 70.9±2.1
5F 62.0±4.2 57.3±5.4 58.1±3.3 65.8±4.1 65.2±1.7 60.4±0.9 57.9±2.6 51.7±3.1 65.0±1.2 65.5±0.8

D
B

2

100F 62.9±1.6 81.0±0.6 80.6±0.4 75.1±1.5 79.9±1.4 80.4±1.1 80.4±1.0 60.1±1.2 78.8±1.4 80.8±0.4
50F 66.5±4.2 76.6±1.4 76.4±2.0 74.4±2.2 76.8±0.9 76.6±1.5 76.7±1.4 58.6±2.5 75.9±0.8 76.9±0.8
25F 66.9±3.6 70.6±2.3 71.0±2.3 73.3±1.1 74.2±2.0 73.4±1.9 71.0±2.5 57.1±1.8 73.0±1.2 75.5±1.5
10F 64.8±5.7 58.9±10.6 57.3±8.2 72.3±2.3 72.4±1.3 72.1±2.3 58.6±9.2 56.6±2.3 72.9±1.5 74.3±2.1
5F 55.7±8.6 56.8±8.1 56.4±7.9 70.9±1.5 68.1±2.7 65.7±1.7 57.3±6.8 52.6±1.4 67.6±2.2 66.2±2.0

D
B

3

100F 64.2±4.4 80.8±1.3 80.7±1.5 80.1±0.7 81.3±0.7 81.2±0.9 80.8±1.7 59.0±1.0 80.9±0.6 80.9±1.7
50F 65.9±3.2 77.2±0.7 77.3±0.8 77.7±1.6 77.7±2.0 78.3±1.1 77.3±0.7 55.5±2.3 77.7±1.0 78.3±1.3
25F 69.1±2.1 73.6±3.2 73.1±2.9 75.7±0.9 76.9±1.2 78.2±0.7 73.5±3.2 55.1±1.6 76.8±0.8 77.5±1.0
10F 63.6±4.4 64.0±8.0 63.7±6.9 75.7±1.3 74.9±0.7 74.9±0.8 64.6±7.9 53.8±2.2 74.8±2.1 75.6±1.9
5F 60.5±6.4 64.3±8.2 65.3±7.4 69.4±1.9 71.1±0.6 68.5±3.3 64.1±8.5 51.4±0.4 68.9±0.9 71.0±1.6

D
B

4

100F 70.5±3.8 83.2±0.7 83.2±0.6 81.1±1.8 84.3±0.9 83.4±0.6 83.2±0.9 59.7±1.7 83.3±1.5 83.1±0.7
50F 72.0±3.8 78.5±1.6 78.5±1.7 79.4±1.0 80.0±2.0 81.6±1.6 78.8±1.3 60.7±1.7 79.5±1.2 81.1±2.3
25F 68.1±3.4 74.3±4.2 74.4±4.1 79.8±1.9 78.6±0.9 79.2±0.6 74.1±4.7 60.7±2.1 78.6±1.1 79.4±1.2
10F 67.7±4.8 64.8±7.7 64.2±7.5 76.2±1.8 72.2±0.8 70.2±1.8 65.7±7.0 57.7±0.9 71.4±1.2 71.7±0.7
5F 61.6±8.8 59.6±7.4 59.4±7.8 75.5±1.7 74.4±1.7 73.7±1.7 58.8±7.7 58.2±1.2 73.8±1.1 75.0±0.6

D
B

5

100F 50.7±12.3 87.8±0.8 87.7±0.7 92.1±0.4 88.8±1.0 88.1±0.5 87.9±0.8 91.2±1.2 88.4±0.8 88.5±0.5
50F 66.2±17.2 87.6±2.2 89.9±1.9 92.3±0.3 88.9±0.5 88.9±0.6 88.8±2.1 91.5±1.2 88.8±0.3 89.1±0.7
25F 80.3±16.6 90.4±1.4 93.7±1.6 95.3±0.2 89.1±1.4 91.1±0.9 90.8±1.5 92.1±0.7 89.6±0.6 89.5±0.5
10F 76.1±9.8 93.1±1.2 94.9±0.7 95.5±0.4 89.4±1.2 92.9±0.9 93.7±1.3 91.9±0.7 89.4±1.3 89.5±0.5
5F 74.7±8.3 93.2±1.1 94.1±1.4 95.6±1.8 87.2±0.1 90.1±4.4 94.2±0.8 89.9±1.0 87.3±0.0 87.2±0.4

D
B

6

100F 72.7±8.1 91.6± 0.4 93.2±1.1 92.6±0.4 92.1±0.4 92.5±0.5 91.8±0.9 93.0±0.5 92.3±0.3 91.4±0.2
50F 78.9±14.4 89.6±2.1 95.0±1.0 94.8±1.1 91.5±0.3 92.9±0.8 93.1±0.8 92.2±0.5 91.4±0.5 91.2±0.3
25F 86.3±8.8 91.7± 1.2 96.6±1.0 96.0±1.0 92.0±0.2 94.7±1.0 95.2±2.2 92.5±0.4 91.8±0.4 91.8±0.5
10F 78.3±9.9 93.5± 0.7 97.6±0.4 96.6±1.2 89.7±3.1 95.6±1.4 96.6±0.6 94.0±0.5 90.9±2.5 92.0±0.1
5F 78.1±10.0 93.3±0.8 97.6±0.4 96.6±1.3 88.5±7.6 95.0±1.4 96.5±1.1 92.3±0.5 88.7±7.5 92.2±0.1

D
B

7

100F 56.4±11.2 74.9±0.8 74.9±1.2 79.8±0.8 76.1±0.7 74.1±1.2 75.3±1.1 79.8±1.0 75.4±0.7 74.7±1.1
50F 61.5±11.3 77.5±1.5 76.0±1.7 80.5±0.9 79.6±0.6 77.7±1.0 78.4±1.2 81.1±0.5 78.9±1.1 78.0±1.1
25F 69.7±8.0 79.3±0.5 79.9±0.9 81.6±0.4 80.3±0.4 79.1±0.4 80.0±0.6 81.3±0.4 80.8±0.3 78.9±2.4
10F 66.0±10.6 78.7±2.1 80.7±1.2 81.2±0.1 80.2±0.8 79.3±1.3 81.2±0.9 80.2±0.9 80.6±0.3 80.5±0.3
5F 66.2±10.3 79.9±0.8 79.8±1.1 80.9±0.6 80.5±0.4 77.1±2.9 80.9±0.8 77.9±0.4 80.4±0.2 78.5±3.9

D
B

8

100F 61.2±4.9 70.5±0.6 70.5±0.6 66.1±0.6 70.4±0.3 70.6±0.4 70.5±0.6 68.1±0.3 70.4±0.3 70.5±0.6
50F 64.5±1.6 62.9±4.2 64.1±3.1 66.1±0.7 68.5±0.3 68.7±0.5 62.8±4.3 68.6±0.8 68.6±0.2 68.8±0.5
25F 56.0±7.9 59.9±3.1 65.4±0.8 66.0±1.2 70.2±0.3 66.0±0.4 62.3±2.0 70.0±0.8 68.1±0.6 66.7±0.4
10F 44.2±11.2 57.1±3.1 66.3±1.9 62.9±0.8 72.7±0.4 63.6±1.0 61.4±2.7 65.6±1.5 65.7±1.3 59.4±0.4
5F 42.7±12.0 57.1±2.5 67.5±0.6 61.9±0.9 72.0±1.4 63.0±2.1 61.9±1.2 65.8±4.4 68.0±0.9 53.9±0.6

D
B

9

100F 77.5±1.0 71.4±0.4 71.3±0.4 70.6±0.9 71.3±0.7 71.7±0.7 71.2±0.5 75.7±0.6 67.5±0.9 71.4±0.4
50F 64.3±5.7 66.0±2.5 72.1±1.2 76.3±0.3 69.4±0.2 71.9±1.5 73.0±1.8 76.1±0.6 68.4±0.5 68.6±0.1
25F 53.6±10.1 67.5±3.9 73.8±2.5 77.0±0.3 74.0±0.3 76.2±0.3 73.9±2.8 74.5±0.4 70.1±0.1 64.2±0.1
10F 42.9±9.8 72.1±3.1 76.4±1.8 74.9±0.5 76.6±0.3 77.3±0.9 76.8±1.9 69.7±0.6 67.1±0.1 56.3±0.2
5F 37.1±6.8 73.2±2.5 76.1±1.3 71.8±0.9 78.0±0.3 80.3±1.2 76.3±1.6 65.6±1.1 67.0±0.3 42.3±1.0

D
B

1
0

100F 32.1±5.2 54.6±0.5 54.4±0.5 44.5±1.2 54.2±0.6 56.2±0.5 54.9±0.2 49.6±0.2 52.1±0.3 54.6±0.5
50F 35.6±7.7 45.9±1.7 46.7±0.9 37.1±0.4 41.9±0.3 45.0±0.6 48.6±0.7 40.4±0.5 40.8±0.5 40.2±0.4
25F 35.4±6.1 43.4±2.0 45.5±2.4 32.7±0.9 36.7±0.6 41.6±1.4 46.2±2.4 34.7±0.5 35.5±0.2 34.2±0.2
10F 29.0±2.5 39.2±2.1 41.9±1.9 28.2±0.9 31.8±0.3 42.2±0.4 42.3±2.0 32.9±0.4 31.1±0.1 30.8±0.1
5F 21.2±1.8 35.9±2.0 38.7±2.6 25.1±0.8 25.8±0.2 42.0±0.8 39.6±2.5 31.6±0.9 25.8±0.2 25.2±0.323



Table 7: Classification accuracy in percent ± standard deviation, obtained on the 5 runs,
the 6 “A” methods (and baseline) and the 10 datasets. Baseline results are reported for
100F feature sets. The standard deviation is computed on the 5 folds of the external
cross-validation and the 5 independent runs. Best results for each dataset and feature set
are highlighted in bold.

BoP CTK SVM-M SVM-G SVM-L SVM-BoPM SVM (100F)
A A A A A A X

DB1 54.5±1.7 54.2±0.9 46.3±5.1 43.4±2.7 40.8±2.3 43.5±0.8 83.7±1.5
DB2 41.8±4.2 42.4±1.1 33.1±1.7 33.3±2.2 33.1±3.5 32.3±3.4 80.8±0.4
DB3 48.4±0.6 46.7±1.3 47.0±4.9 44.1±2.8 40.4±1.5 39.3±2.3 80.9±1.7
DB4 45.7±1.5 42.9±3.2 40.0±1.5 40.0±2.3 42.0±1.6 42.6±3.3 83.1±0.7
DB5 96.8±0.1 96.3±0.1 95.4±0.5 89.8±4.1 90.9±0.8 91.7±0.6 88.5±0.5
DB6 98.6±0.1 98.4±0.1 95.1±0.3 93.8±0.4 95.9±1.0 94.4±1.1 91.4±0.2
DB7 82.5±0.2 82.9±0.5 81.6±0.8 78.5±0.5 79.1±1.4 79.1±0.9 74.7±1.1
DB8 69.9±0.6 70.5±0.4 55.9±0.4 68.1±0.3 62.4±0.9 67.5±1.2 70.5±0.6
DB9 78.1±0.2 81.7±0.2 74.5±0.6 75.6±0.7 76.6±0.4 80.3±0.3 71.4±0.4
DB10 35.3±0.3 36.4±0.2 30.8±0.6 35.0±0.2 34.4±0.7 14.9±0.3 54.6±0.5

3 4 5 6 7 8 9 10 11 12 13

6 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 5 features

Figure 2: Mean rank (circles) and critical difference (plain line) of the Friedman/Nemenyi
test, over 5 runs and all datasets, obtained on partially labeled graphs. The blue method
has the best mean rank and is statistically better than red methods. Labeling rate is 20%
and the critical difference is 3.26. This figure shows the results when only 5 node features
are considered (5F datasets).

only), for the 10 different datasets and the 5 sets of features. Bold values
indicate the best performance on each row. Recall that the BoP-A, CTK-A,
SVM-M-A, SVM-G-A, and SVM-L-A methods do not depend on the node

24



4 5 6 7 8 9 10 11 12 13

6 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 10 features

Figure 3: Friedman/Nemenyi test considering 10 node features (10F datasets); see Figure
2 for details. The critical difference is 3.26.

2 4 6 8 10 12 14

7 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 25 features

Figure 4: Friedman/Nemenyi test considering 25 node features (25F datasets); see Figure
2 for details. The critical difference is 3.26.

25



3 4 5 6 7 8 9 10 11 12 13

5 groups have mean column ranks significantly different from ASVM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 50 features

Figure 5: Friedman/Nemenyi test considering 50 node features (50F datasets); see Figure
2 for details. The critical difference is 3.26.

3 4 5 6 7 8 9 10 11 12 13

5 groups have mean column ranks significantly different from SVM-DK-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Friedman/Nemenyi test with 100 features

Figure 6: Friedman/Nemenyi test considering 100 node features (100F datasets); see
Figure 2 for details. The critical difference is 3.26.

26



4 5 6 7 8 9 10 11 12

9 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

Figure 7: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F , 50F, 100F).
The critical difference is 1.46; see Figure 2 for details.

features as they are based on the graph structure only.
Moreover, the different classifiers are compared across datasets through

a Friedman test and a Nemenyi post-hoc test [78]. The Friedman test is a
non-parametric equivalent of the repeated-measures ANOVA. It ranks the
methods for each dataset separately, the best algorithm getting the rank 1,
the second best rank 2, etc. Once the null hypothesis (the mean ranking of
all methods is equal, meaning all classifiers are equivalent) is rejected with p-
value < 0.05, the (non parametric) post-hoc Nemenyi test is then computed.
Notice that all Friedman tests were found to be positive in our experiments.
The Nemenyi test determines whether or not each method is significantly
better (p-value less than 0.05 based on the 5 runs, the considered datasets
and feature sets) than another.

This is reported, for each feature set in turn (5F, 10F, . . . , 100F), and
thus increasing information available on the nodes, in Figures 2 to 6, while
the result of an overall test based on all the features sets and datasets is
shown in Figure 7.

5.4.1. Overall performances on all datasets and all node feature sets

From Tables 6 to 7 and Figure 7, overall best performances on all dataset
and all node features sets are often obtained either by a SVM based on node

27



0 2 4 6 8 10 12 14 16 18

14 groups have mean column ranks significantly different from CTK-A

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

Figure 8: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F, 50F, 100F),
but computed only on datasets DB5 to DB9 (driven by graph structure, A); see Figure 2
for details. The critical difference is 2.06.

features combined with new features derived from the graph structure (Sub-
section 4.1), or, unexpectedly, by the CTK-A sum-of-similarities method
(using graph structure only; see Subsection 4.3.2), which performs quite
well on datasets five to nine. The BoP-A node betweenness (using graph
structure only, see Subsection 4.3.1) is also competitive and achieves results
similar to the sum-of-similarities CTK-A method (as already observed in
[30]).

However, the best method among the graph structure plus node features
SVM is not straightforward to determine (see Figure 7). From Figures 2
to 6, the main trend is that the performance decreases when the number of
features decreases, which seems normal.

However, this trend is not always observed; for example, with the SVM-
M-AX method (SVM with features extracted from Moran’s index and fea-
tures on nodes, see Subsection 4.1.1) and dataset DB5, the performances
rise when the number of features decreases. This can be explained by ob-
serving that each dataset labeling can be better explained in terms of its
graph structure (graph-driven datasets, DB5 to DB9), or by its node features
(features-driven datasets, DB1 to DB4, plus DB10).

To confirm this fact, the network structure autocorrelation was computed

28



2 2.5 3 3.5 4 4.5 5 5.5 6

4 groups have mean column ranks significantly different from BoP-A

SVM-BoPM-A

SVM-L-A

SVM-G-A

SVM-M-A

CTK-A

BoP-A

Overall Friedman/Nemenyi test with all sets of features

Figure 9: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F, 50F, 100F),
for methods based on graph information alone (A); see Figure 2 for details. The critical
difference is 0.48.

for each class (i.e., for each yc) and the average is reported for each dataset.
This measure quantifies to which extent the target variable is correlated with
its neighboring nodes. The values are reported on Table 8 for Moran’s I,
Geary’s c and the LPCA contiguity ratio (see Subsection 4.1.1). For Moran’s
I, high values (large autocorrelation) indicate that the graph structure is
highly informative. This is the opposite for Geary and LPCA, as small
values correspond to a large autocorrelation. It can be observed that our
hypothesis is clearly confirmed.

Nevertheless, from Tables 6 and 7 and Figure 7, the best overall perform-
ing methods combining node features and graph structure are (excluding the
methods based on the graph alone, BoP-A and CTK-A), SVM-BoPM-AX
(SVM with bag-of-paths modularity, see Subsection 4.1.4) and ASVM-AX
(SVM based on autocovariates, see Subsection 4.2.1). While performing
better on our datasets (their mean rank is slightly higher), they are however
not statistically different from SVM-M-AX, SVM-L-AX and SVM-DK-AX.

Notice also that, from Figure 7, if we look at the performances obtained
by a baseline linear SVM based on node features only (SVM-X), we clearly
observe that integrating the information extracted from the graph structure
improves the results. Therefore, it seems to be a good idea to consider

29



0 5 10 15

9 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX
SVM-COT-AX
SVM-BoPM-A

SVM-L-A
SVM-L-AX

SVM-BoPM-AX
SVM-DK-AX

ASVM-AX
SVM-G-A
SVM-M-A

SVM-X
CTK-A
BoP-A

SVM-M-AX
SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

Figure 10: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F, 50F, 100F),
but computed only on datasets DB1 to DB4 and DB10 (driven by node features, X); see
Figure 2 for details. The critical difference is 2.06.

collecting link information, which could improve the classification results.

5.4.2. Exploiting either the structure of the graph or the node features alone

Obviously, as already mentioned, datasets DB5 to DB9 are graph-driven,
which explains the good performances of the sum-of-similarities CTK-A and
BoP-A on these data. For these datasets, the features on the nodes do not
help much for predicting the class label, as observed when looking to Figure
8 where results are displayed only on these datasets. It also explains the
behavior of method SVM-M-AX on dataset DB5, among others.

In this case, the best performing methods are the sum-of-similarities
CTK-A and the bag-of-paths betweenness BoP-A (see Subsection 4.3). This
is clearly confirmed by displaying the results of the methods based on the
graph structure only in Figure 9 and the results obtained on the graph-
driven datasets in Figure 8. Interestingly, in this setting, these two methods
ignoring the node features (CTK-A and BoP-A) are outperforming the SVM-
based methods.

Conversely, on the node features-driven datasets (DB1 to DB4 and DB10;
results displayed in Figure 10 and Tables 6 and 7 ), all SVM methods based
on node features (and graph structure) perform well while methods based

30



2 3 4 5 6 7 8

5 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-KCA-AX

SVM-COT-AX

SVM-L-AX

SVM-BoPM-AX

SVM-DK-AX

ASVM-AX

SVM-X

SVM-M-AX

SVM-G-AX

SAR-AX

Overall Friedman/Nemenyi test with all sets of features

Figure 11: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F, 50F, 100F),
performed only on methods combining graph structure and node features information
(AX, plus simple SVM-X as baseline). See Figure 2 for details. The critical difference is
0.86.

on the graph structure only obtain much worse results, as expected. In
this setting, the situation is rather similar to the overall results case (see
Figure 7). The two best techniques are SVM-BoPM-AX (SVM with bag-of-
paths modularity, see Subsection 4.1.4) and SVM-DK-AX (SVM based on
a double kernel, see Subsection 4.2.2). However, this time, these two first
ranked methods are not significantly better than the simple linear SVM
based on features only (SVM-X), as shown in Figure 10. Thus, for the node
features-driven datasets, the graph structure does not bring much additional
information.

From another point of view, Figure 11 takes into account all datasets and
compares only the methods combining node features and graph structure.
In this setting, the best ranked methods are again SVM-BoPM-AX, ASVM-
AX and SVM-DK-AX which are now significantly better than the baseline
SVM-X (less methods are compared on more datasets).

Notice that SVM-KCA-AX performs better than SVM-COT-AX, but
is not significantly different from SVM-DK-AX, although SVM-DK-AX’s
mean rank is higher than SVM-KCA-AX’s mean rank.

Finally, the worst performing method is always SAR-AX, except if only

31



3.5 4 4.5 5 5.5 6 6.5 7

6 groups have mean column ranks significantly different from SVM-BoPM-AX

SVM-BoPM-A

SVM-BoPM-AX

SVM-L-A

SVM-L-AX

SVM-G-A

SVM-G-AX

SVM-M A

SVM-M-AX

SVM-X

Overall Friedman/Nemenyi test with all sets of features

Figure 12: Friedman/Nemenyi test considering all feature sets (5F, 10F, 25F, 50F, 100F),
only considering methods based on a graph embedding (plus regular linear SVM for com-
parison). See Figure 2 for details. The critical difference is 0.76.

features-driven datasets are considered. Even in this case, SAR-AX outper-
forms only graph-based methods (see Figure 10).

5.4.3. Comparison of graph embedding methods

Concerning the embedding methods described in Subsection 4.1, we can
conclude that Geary’s index (SVM-G-A and SVM-G-AX) should be avoided
by preferring the bag-of-paths modularity (SVM-BoP-AX), Moran’s index
(SVM-M-AX) or Local Principal Component Analysis (SVM-L-AX). This
is clearly observable when displaying only the results of the methods com-
bining node features and graph structure in Figure 11. This result is further
confirmed when comparing only the methods based on a graph embedding
in Figure 12.

5.4.4. Discussion about time complexity

Table 5 shows a comparison of computation time for the 16 classifiers.
Notice that, from columns Time 251 to Time 756, the number of nodes
is multiplied by 3.012. The fastest methods are CTK-A (which has an effi-
cient sparse implementation, quasi-linear in number of samples/modes) for
graph-based classifiers and ASVM-AX for classifiers combining features and

32



Table 8: Mean autocorrelation of class membership computed on all the investigated
datasets. For Moran’s I, a high value corresponds to a large autocorrelation. Conversely,
for Geary’s c and LPCA, a small value implies a large autocorrelation. For each autocor-
relation measure, – indicates the presence of negative autocorrelation, a value close to 0
indicates a lack of structural association and + indicates presence of positive autocorre-
lation. See Subsection 4.1 and [45] for details. Datasets can be divided into two groups
(more driven by graph structure (A) or by features on nodes (X)), according to these
measures. I0 is equal to −1/(n− 1) ≈ 0 , where n is the number of nodes.

A-driven + 0 – DB 5 DB 6 DB 7 DB 8 DB 9
Moran’s I > I0 = I0 < I0 1.27 1.09 0.66 0.53 0.79
Geary’s c < 1 1 > 1 0.09 0.09 0.33 0.19 0.12
LPCA c. ratio 2 cr0 > cr0 0.20 0.13 0.58 0.67 0.26
X-driven + 0 – DB 1 DB 2 DB 3 DB 4 DB 10
Moran’s I > I0 = I0 < I0 −0.22 −0.12 −0.15 −0.06 0.15
Geary’s c < 1 1 > 1 0.78 0.59 0.63 0.57 0.43
LPCA c. ratio 2 cr0 > cr0 2.54 2.10 1.86 1.90 0.82

structural information. Interestingly, those two classifiers actually achieved
good overall results previously. Notice that BoP-based methods are the
slowest due to a full matrix inversion (O(n3)). Most other methods exhibit
a nearly quadratic behavior. Finally, notice that most SVM methods use the
Liblinear library [76], allowing Matlab to execute C code through a MEX
file.

5.4.5. Summary of main findings

To summarize, the experiments lead to the following conclusions: The
best performing methods are highly dependent on the dataset. We observed
(see Table 8) that, quite naturally, some datasets are more graph-driven in
the sense that the network structure conveys important information for pre-
dicting the class labels, while other datasets are more node features-driven
and, in this case, the graph structure does not help much. However, it is
probably a good idea to take into consideration information about the graph
structure, because this additional information can improve significantly the
results, depending on the dataset (see Figures 11 and 12).

If we consider the graph structure alone, the two best investigated meth-
ods are the sum-of-similarities (CTK-A) and the bag-of-paths betweenness

2LPCA contiguity ratio is positive and lower-bounded by cr0 = 1 −
√
λmax (which

tends to be close to zero) where λmax is the largest eigenvalue of A. The upper bound is
unknown [51].

33



(BoP-A, see Subsection 4.3). They clearly outperform the graph embedding
methods, but also the SVMs on some datasets. This is confirmed by a paired
signed Wilcoxon test: BoP-A and CTK-A outperform SVM-X at p < 10e−5.

When, in addition, informative features on nodes are available, it is worth
considering combining the information, and, in this context, we found that
the best performing methods are SVM-BoPM-AX (SVM with bag-of-paths
modularity, see Subsection 4.1.4), ASVM-AX (SVM based on autocovari-
ates, see Subsection 4.2.1) and SVM-DK-AX (SVM based on a double ker-
nel, see Subsection 4.2.2) (see Figure 11). Taking the graph structure into
account improves the results over a baseline SVM considering node features
only. This is confirmed (but only at p < 0.05) for the two first methods by
a paired signed Wilcoxon test: SVM-BoPM-AX outperforms SVM-X with
p = 0.042 and ASVM-AX outperforms SVM-X with p = 0.029. On the
contrary, the p-value for SVM-DK-AX against SVM-X is only 0.182.

6. Conclusion

This work considered a data structure made of a graph and plain fea-
tures on nodes of the graph. In this context, 16 semi-supervised classifica-
tion methods were investigated to compare the feature-based approach, the
graph structure-based approach, and the dual approach combining both in-
formation sources. It appears that the best results are often obtained either
by a SVM method (the considered baseline classifier) based on plain node
features combined to a given number of new features derived from the graph
structure (namely from the BoP modularity or autocovariates), or by the
sum-of-similarities and the bag-of-paths modularity method, based on the
graph structure only, which perform well on some datasets for which the
graph structure carries important class information.

Indeed, we observed empirically that some datasets can be better ex-
plained by their graph structure (graph-driven datasets), or by their node
features (features-driven datasets). Consequently, neither the graph-derived
features alone or the plain features alone is sufficient to obtain optimal
performances. In other words, in some situations, standard feature-based
classification results can be improved significantly by integrating informa-
tion from the graph structure. In particular, the most effective methods
were based on bag-of-paths modularity (SVM-BoPM-AX), autocovariates
(ASVM-AX) or a double kernel (SVM-DK-AX).

The take-away message can be summarize as follows: if the dataset is
graph-driven, a simple sum-of-similarities or a bag-of-paths betweenness are
sufficient, but this is not the case if the features on the nodes are (more)

34



informative. In both cases, SVM-BoPM-AX, ASVM-AX, SVM-DK-AX still
ensured good overall performances, as shown on the investigated datasets.

A key point is therefore to determine a priori if a given dataset is graph-
driven or features-driven. In this paper we proposed to use some well-known
spatial autocorrelation indexes to tackle this issue. Further investigations
will be carried in that direction. In particular, how can we automatically
infer properties of a new dataset (graph-driven or features-driven) if all class
labels are not known? Can we rely on measuring autocorrelation based on
features?

Finally, the present work does not analyze the scalability of the methods,
this is also left for further work.

Acknowledgement

Acknowledgement: This work was partially supported by the Elis-IT
project funded by the “Région wallonne” and the Brufence project supported
by INNOVIRIS (“Région bruxelloise”), Belgium. We thank this institution
for giving us the opportunity to conduct both fundamental and applied
research.

References

[1] S. Sun, A survey of multi-view machine learning, Neural Computing &
Applications 23 (2013) 2031–2038.

[2] J. Zhao, X. Xie, X. Xu, S. Sun, Multi-view learning overview: Recent
progress and new challenges, Information Fusion 38 (C) (2017) 43–54.

[3] F. Fouss, M. Saerens, Yet another method for combining classifiers
outputs: A maximum entropy approach, in: Proceedings of the 5th
International Workshop on Multiple Classifier Systems (MCS 2004),
Lecture Notes in Computer Science, Vol. 3077, Springer-Verlag, 2004,
pp. 82–91.

[4] L. Kuncheva, Combining pattern classifiers: methods and algorithms,
Wiley, 2004.

[5] R. M. Cooke, Experts in uncertainty, Oxford University Press, 1991.

[6] R. A. Jacobs, Methods for combining experts’ probability assessments,
Neural Computation 7 (1995) 867–888.

35



[7] D. Chen, X. Cheng, An asymptotic analysis of some expert fusion meth-
ods, Pattern Recognition Letters 22 (2001) 901–904.

[8] J. Kittler, F. M. Alkoot, Sum versus vote fusion in multiple classifier
systems, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 25 (1) (2003) 110–115.

[9] F. Lad, Operational subjective statistical methods, John Wiley & Sons,
1996.

[10] G. J. Klir, T. A. Folger, Fuzzy sets, uncertainty, and information,
Prentice-Hall, 1988.

[11] D. Dubois, M. Grabisch, H. Prade, P. Smets, Assessing the value of
a candidate: Comparing belief function and possibility theories, in:
Proceedings of the Fifteenth international conference on Uncertainty in
Artificial Intelligence, 1999, pp. 170–177.

[12] C. Merz, Using correspondence analysis to combine classifiers, Machine
Learning 36 (1999) 226–239.

[13] W. B. Levy, H. Delic, Maximum entropy aggregation of individual
opinions, IEEE Transactions on Systems, Man and Cybernetics 24 (4)
(1994) 606–613.

[14] I. J. Myung, S. Ramamoorti, J. Andrew D. Bailey, Maximum entropy
aggregation of expert predictions, Management Science 42 (10) (1996)
1420–1436.

[15] S. Abney, Semisupervised learning for computational linguistics, Chap-
man and Hall/CRC, 2008.

[16] O. Chapelle, B. Scholkopf, A. Zien (editors), Semi-supervised learning,
MIT Press, 2006.

[17] F. Fouss, M. Saerens, M. Shimbo, Algorithms and models for network
data and link analysis, Cambridge University Press, 2016.

[18] T. Hofmann, B. Schölkopf, A. J. Smola, Kernel methods in machine
learning, The Annals of Statistics 36 (3) (2008) 1171–1220.

[19] E. D. Kolaczyk, Statistical analysis of network data: methods and mod-
els, Springer, 2009.

36



[20] S. A. Macskassy, F. Provost, Classification in networked data: a toolkit
and a univariate case study, Journal of Machine Learning Research 8
(2007) 935–983.

[21] T. Silva, L. Zhao, Machine learning in complex networks, Springer,
2016.

[22] A. Subramanya, P. Pratim Talukdar, Graph-based semi-supervised
learning, Morgan & Claypool Publishers, 2014.

[23] X. Zhu, Semi-supervised learning literature survey, unpub-
lished manuscript (available at http://pages.cs.wisc.edu/ jer-
ryzhu/research/ssl/semireview.html) (2008).

[24] X. Zhu, A. Goldberg, Introduction to semi-supervised learning, Morgan
& Claypool Publishers, 2009.

[25] S. Hill, F. Provost, C. Volinsky, Network-based marketing: Identifying
likely adopters via consumer networks, Statistical Science 21 (2) (2006)
256–276.

[26] F. R. Chung, Spectral graph theory, American Mathematical Society,
1997.

[27] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geomet-
ric framework for learning from examples, Journal of Machine Learning
Research 7 (2006) 2399–2434.

[28] X. He, Laplacian regularized d-optimal design for active learning and its
application to image retrieval, IEEE Transactions on Image Processing
19 (1) (2010) 254–263.

[29] S. Chakrabarti, B. Dom, P. Indyk, Enhanced hypertext categorization
using hyperlinks, in: Proceedings of the ACM International Conference
on Management of Data (SIGMOD 1998), 1998, pp. 307–318.

[30] B. Lebichot, I. Kivimaki, K. Françoisse, M. Saerens, Semi-supervised
classification through the bag-of-paths group betweenness, IEEE Trans-
actions on Neural Networks and Learning Systems 25 (2014) 1173–1186.

[31] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-
training, in: Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, COLT’ 98, ACM, New York, NY, USA,
1998, pp. 92–100.

37



[32] D. Borcard, P. Legendre, All-scale spatial analysis of ecological data
by means of principal coordinates of neighbour matrices, Ecological
Modelling 153 (1-2) (2002) 51–68.

[33] S. Dray, P. Legendre, P. Peres-Neto, Spatial modelling: a comprehen-
sive framework for principal coordinate analysis of neighbour matrices,
Ecological Modelling 196 (3-4) (2006) 483–493.

[34] A. Meot, D. Chessel, R. Sabatier, Operateurs de voisinage et analyse
des donnees spatio-temporelles (in french), in: D. Lebreton, B. Asselain
(Eds.), Biometrie et environnement, Masson, 1993, pp. 45–72.

[35] L. Tang, H. Liu, Relational learning via latent social dimensions, in:
Proceedings of the ACM conference on Knowledge Discovery and Data
Mining (KDD 2009), 2009, pp. 817–826.

[36] L. Tang, H. Liu, Scalable learning of collective behavior based on sparse
social dimensions, in: Proceedings of the ACM conference on Informa-
tion and Knowledge Management (CIKM 2009), 2009, pp. 1107–1116.

[37] L. Tang, H. Liu, Toward predicting collective behavior via social di-
mension extraction, IEEE Intelligent Systems 25 (4) (2010) 19–25.

[38] D. Zhang, R. Mao, Classifying networked entities with modularity ker-
nels, in: Proceedings of the 17th ACM Conference on Information and
Knowledge Management (CIKM 2008), ACM, 2008, pp. 113–122.

[39] R. Haining, Spatial data analysis, Cambridge University Press, 2003.

[40] D. Pfeiffer, T. Robinson, M. Stevenson, K. Stevens, D. Rogers,
A. Clements, Spatial analysis in epidemiology, Oxford University Press,
2008.

[41] T. Waldhor, Moran’s spatial autocorrelation coefficient, in: Encyclo-
pedia of Statistical Sciences, 2nd ed. (S. Kotz, N. Balakrishnana, C.
Read, B. Vidakovic and N. Johnson, editors), Vol. 12, Wiley, 2006, pp.
7875–7878.

[42] L. Waller, C. Gotway, Applied spatial statistics for public health data,
Wiley, 2004.

[43] P. Moran, Random associations on a lattice, in: Proceedings of the
Cambridge Philosophical Society, 1947, pp. 321–328.

38



[44] P. Moran, The interpretation of statistical maps, Journal of the Royal
Statistical Society, Series B, 10 (1948) 243–251.

[45] P. de Jong, C. Sprenger, F. van Veen, On extreme values of moran’s i
and geary’s c, Geographical Analysis 16 (1) (1984) 17–24.

[46] K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate analysis, Academic
Press, 1979.

[47] R. C. Geary, The contiguity ratio and statistical mapping, The Incor-
porated Statistician 5 (3) (1954) 115–146.

[48] U. von Luxburg, A tutorial on spectral clustering, Statistics and Com-
puting 17 (4) (2007) 395–416.

[49] M. Newman, Networks: an introduction, Oxford University Press, 2010.

[50] H. Benali, B. Escofier, Analyse factorielle lissee et analyse des differ-
ences locales, Revue de Statistique Appliquee 38 (2) (1990) 55–76.

[51] L. Lebart, Contiguity analysis and classification, in: W. Gaul, O. Opitz,
M. Schader (Eds.), Data Analysis, Studies in classification, data anal-
ysis, and knowledge organization, Springer, 2000, pp. 233–243.

[52] M. Newman, M. Girvan, Finding and evaluating community structure
in networks, Physical Review E 69 (2004) 026113.

[53] M. Newman, Modularity and community structure in networks, in: Pro-
ceedings of the National Academy of Sciences (USA), Vol. 103, 2006,
pp. 8577–8582.

[54] R. Devooght, A. Mantrach, I. Kivimaki, H. Bersini, A. Jaimes,
M. Saerens, Random walks based modularity: Application to semi-
supervised learning, in: Proceedings of the 23rd International Confer-
ence on World Wide Web, WWW ’14, 2014, pp. 213–224.

[55] J. E. Besag, Nearest-neighbour systems and the auto-logistic model for
binary data, Journal of the Royal Statistical Society. Series B (Method-
ological) 34 (1) (1972) 75–83.

[56] N. H. Augustin, M. A. Mugglestone, S. T. Buckland, An autologistic
model for the spatial distribution of wildlife, Journal of Applied Ecology
33 (2) (1996) 339–347.

39



[57] N. H. Augustin, M. A. Mugglestone, S. T. Buckland, The role of simula-
tion in modelling spatially correlated data, Environmetrics 9 (2) (1998)
175–196.

[58] Q. Lu, L. Getoor, Link-based classification, in: Proceedings of the 20th
International Conference on Machine Learning (ICML 2003), 2001, pp.
496–503.

[59] Y. Pawitan, In all likelihood: statistical modelling and inference using
likelihood, Oxford University Press, 2001.

[60] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incom-
plete data via the em algorithm (with discussion), Journal of the Royal
Statistical Society B 39 (1) (1977) 1–38.

[61] G. McLachlan, T. Krishnan, The EM algorithm and extensions, 2nd
ed, Wiley, 2008.

[62] V. Roth, Probabilistic discriminative kernel classifiers for multi-class
problems, in: B. Radig, S. Florczyk (Eds.), Pattern Recognition: Pro-
ceedings of the 23rd DAGM Symposium, Vol. 2191 of Lecture Notes in
Computer Science, Springer, 2001, pp. 246–253.

[63] B. Scholkopf, A. Smola, Learning with kernels, The MIT Press, 2002.

[64] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis,
Cambridge University Press, 2004.

[65] F. Fouss, K. Francoisse, L. Yen, A. Pirotte, M. Saerens, An experimen-
tal investigation of kernels on a graph on collaborative recommendation
and semisupervised classification, Neural Networks 31 (2012) 53–72.

[66] T. Gartner, Kernels for structured data, World Scientific Publishing,
2008.

[67] J. LeSage, R. K. Pace, Introduction to spatial econometrics, Chapman
& Hall, 2009.

[68] A. Mantrach, N. van Zeebroeck, P. Francq, M. Shimbo, H. Bersini,
M. Saerens, Semi-supervised classification and betweenness computa-
tion on large, sparse, directed graphs, Pattern Recognition 44 (6) (2011)
1212–1224.

40



[69] K. Francoisse, I. Kivimaki, A. Mantrach, F. Rossi, M. Saerens, A
bag-of-paths framework for network data analysis, Neural Networks
90 (2017) 90–111.

[70] M. Saerens, Y. Achbany, F. Fouss, L. Yen, Randomized shortest-path
problems: Two related models, Neural Computation 21 (8) (2009)
2363–2404.

[71] D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Scholkopf, Learning with
local and global consistency, in: Proceedings of the Neural Information
Processing Systems Conference (NIPS 2003), 2003, pp. 237–244.

[72] D. R. Hardoon, S. R. Szedmak, J. R. Shawe-taylor, Canonical correla-
tion analysis: An overview with application to learning methods, Neural
Comput. 16 (12) (2004) 2639–2664.

[73] S. Prithviraj, G. Galileo, M. Bilgic, L. Getoor, B. Gallagher, T. Eliassi-
Rad, Collective classification in network data, AI Magazine 29 (3)
(2008) 93–106.

[74] J. McAuley, J. Leskovec, Learning to discover social circles in ego net-
works, Advances in Neural Information Processing Systems (NIPS).

[75] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support
vector machines, Transaction on Neural Network 13 (2) (2002) 415–425.

[76] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, LIBLINEAR: A library
for large linear classification, Journal of Machine Learning Research 9
(2008) 1871–1874.

[77] A. Gammerman, V. Vapnik, V. Vowk, Learning by tranduction, in:
Proceedings of the 14th Conference on Uncertainty in Artificial Intelli-
gence, Wisconsin, 1998, pp. 273–297.

[78] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

41


	Introduction
	Background and notation
	Some related work
	Description of relevant classification methods
	Graph embedding-based classifiers
	Maximizing Moran's I
	Minimizing Geary's c
	Local principal component analysis
	Bag-of-path modularity

	Extensions of standard feature-based classifiers
	The AutoSVM: taking autocovariates into account
	Double kernel SVM
	A spatial autoregressive model

	Graph-based classifiers
	The bag-of-paths group betweenness
	A sum-of-similarities based on the regularized commute time kernel

	Multi-view learning
	Co-training
	Kernel canonical correlation analysis


	Experiments
	Datasets
	Compared classification models
	Using features on nodes only
	Using graph structure only
	Using both information (features on nodes and graph structure)

	Experimental methodology
	Results and discussion
	Overall performances on all datasets and all node feature sets
	Exploiting either the structure of the graph or the node features alone
	Comparison of graph embedding methods
	Discussion about time complexity
	Summary of main findings


	Conclusion

